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Abstract 
The Sayre-equation tangent formula (SETF) develops 
sets of phases tending to satisfy Sayre's equations for 
both large and small normalized structure factors. 
There are two components in the SETF, correspond- 
ing to contributions from phase triplets and quartets 
respectively. The development of objective algorithms 
for properly weighting these components and for 
gradually building up the quartet contribution has 
enabled the SETF, within the procedure SAYTAN, 
to be incorporated into MULTAN87, the latest ver- 
sion of the package. Examples of tests of MUL- 
TAN87 and its use in solving unknown structures are 
given. 

Introduction 
In a previous paper Debaerdemaeker, Tate & 
Woolfson (1985) described the theory of a new 
tangent formula which had the property of developing 
phases tending to satisfy a system of Sayre equations. 
A particular Sayre equation can be written in terms 
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of normalized structure factors as 

E(h)=[f(b)/g(h)V]~,E(k)E(h-k)  (1) 
k 

where f(h)  and g(h) are the scattering factors for 
atoms and squared-electron-density atoms respec- 
tively and V is the volume of the unit cell. 

Phases are sought to achieve minimization of 

R = E  E(b)-[K/g(h)]Y~ E ( k ) E ( h - k )  (2) 
h k 

where K is an overall scaling factor which com- 
pensates for partial data in the k summations and the 
g(h) can be determined on theoretical grounds. 

The minimization condition is 

8R/0~0(l) =0  for all 1; 

application of this to (2), followed by some algebraic 
manipulation, gives the Sayre-equation tangent for- 
mula (SETF) 

q~(l) = phase of [t(l)-2gq(l)] (3) 
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where 

t(l) = ~ [ 1/g(i) + 1/g(h) + 1 / g ( h - l ) ] E ( h ) E ( l - h )  

" (4) 
and 

q(l)=~,[1/g(k)2]r, E(h)E(k-h)E(l-k). (5) 
k h 

A reasonable K is obtained from the condition 

leading to 

K = 

OR~OK =0,  

E ~'. [ 1 / g ( h ) ] E ( h ) E ( k ) E ( h - k )  
h k 

~[1/g(h)2]l~ E(k)E(h-k) I 

E(h)t(h) 
= h (6) 

E(l~)q(h) 
h 

The system of Sayre equations can include those for 
which E (h) in (1) is zero or very small. Such equations 
can be included in the expression for R and so it is 
possible to use small, ideally zero, E values in the 
process of determining the phases of the large E's, 
in terms of which the structure will be defined. 
However, experience showed that better results were 
obtained from the SETF if the terms in the summation 
of (2) were differently weighted for large and small 
E's  giving 

I I Rw=E m E(h)-[K/g(h)]~, E ( k ) E ( h - k )  (7) 
h k 

where m = 1 for large E's  and some other value for 
small ones. 

Subsequent to the 1985 paper of Debaerdemaeker, 
Tate & Woolfson the properties of the SETF have 
been more fully explored and an optimized pro- 
cedure, applicable to the complete range of structures, 
has been devised. This has made it possible to include 
the SETF in the MULTAN package and, in the newly 
created MULTAN87, it appears as the SAYTAN 
procedure. Here we describe the developments of the 
SETF, how it is incorporated in MULTAN87 and 
give examples of its performance. 

S A  Y T A N  

With the weighting scheme introduced in (7) it is 
possible to divide the quantity q(l) into two parts so 
that 

q(l) = qS(l) + mqW(l). (8) 

The left-hand side and the general term on the right- 
hand side of (5) have indices corresponding to a 

quartet !, h, h - k  and k - 1  with a cross term of index 
k. The separate components qS(l) and qW(l) arise 
from quartets for which [E(k) l are 'strong' or 'weak' 
respectively and the m appearing in (8) is the same 
as that introduced in (7). From the SETF we see that 

q~(l) =phase of [ t ( I ) -2KqS(I ) -2mKqW(l) ] .  (9) 

For a correct set of phases it can be shown that 

2KqS(l)=~,[1/g(h)+ 1/g(h-I)]E(h)E(l-h), (10) 
h 

so that the SETF then reduces to 

g0(l) = phase o f / [ 1 / g ( l ) ]  ~ E ( h ) E ( l - h )  
L h 

- 2Km ~, [1/g(k) 2] ~ E(h)E(k-h)E(i-k)~ 
k h ] 

(11) 

and the summation over k is restricted to terms for 
which [E(k)[ is small (ideally zero). 

Strictly the form of ( l l )  only applies for a set of 
correct phases but, in practice, it is found that this 
reduced form is almost as effective as the full form 
(3) in refining random phases. The reduced form also 
has the advantage that computation is nearly twice 
as fast. 

At the time of reporting the first successful results 
from SA YTAN it was necessary to find a good value 
for m by trial and error for each structure. Since then, 
experience has enabled us to incorporate into the 
program a recipe for the optimization of m. SA YTAN 
is found to work best when the ratio 

r = NSRPSI/NSTR = 0.5, (12) 

where NSRPSI and NSTR are the number of 'weak' 
and 'strong' relationships in the Y.2 list of MULTAN. 
As a first step to achieving this ratio of weak to strong 
relations MULTAN87 sets 

NZRO = NDET/2,  (13) 

where NZRO and NDET are the numbers of weak 
and strong reflexions respectively, and then, if the 
resulting r is not very close to 0-5, the program 
calculates a simple proportional adjustment to NZRO 
which gives a better r value. Finally the scaling factor 
for the weak quartets is calculated from 

m=5/(l+8r). (14) 

The weighting factor K given in (6) can also be written 
a s  

K= T/Q (15) 

where, from (6), T and Q correspond to a sum of 
triples and a sum of quartets respectively. In principle, 
according to the theory, the value of K should be 
varied from cycle to cycle according to the current 
value of the ratio T/Q but, in practice, this does not 
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work. The SETF is often used with initially random 
phases and the values of T and Q can, by chance, 
take on a wide range of possible values and so give 
a very large value to K, which distorts or destroys 
the phase-refining process. To introduce stability into 
the system it is found better to increase gradually the 
influence of the second term of the modified SETF 
[(11)] as the refinement progresses. This is done by 
taking 

K =  Tact/Qth~o,- (16) 

where Tac t is the actual sum of triples for the current 
phase values and Qtheor is a theoretical estimate of 
the sum of quartets. Thus 

We divide Qtheor into two components corresponding 
to IE(h) l being either 'strong' or 'weak' so that 

Qth~or = QtSheor + Qt~eor. (18) 

For IE(h) l strong the components in the summation 
over k will tend to line up and it is a sufficiently good 
approximation to write 

/I Qt~heor=~h [1/g(h)2 ] E ( k ) E ( h - k )  (19) 

The assumption that individual triples obey the 
Cochran distribution gives 

{ / QtSh¢°r'~h [1/g(h)] ~'lE(k)E(h-k)k II(K)/ Io(K) 

(20) 

where K = 2tr3~r23/21E(h)E(k)E(h-k) I, as usual. 
For IE(h) I small, the quantity 

is that which appears as part of the PSIZERO figure 
of merit in MULTAN. It is known that for a correct 
set of phases the value of this quantity is approxi- 
mately the expectation value for random phases so 
that 

Qt~h~or~-E[1/g(h)E]EIE(k)E(h-k)l 2. (21) 
h k 

A combination of results (20) and (21) gives the 
desired estimate ~of Qtheor- 

It is the objective algorithms for choosing a suitable 
number of small E's and determining the weights m 
and K which enable SA YTAN to be used routinely 
and hence to be part of a standard package. 

Quartet terms have been employed actively in pre- 
vious direct-methods procedures, for example in 

SHELXTL (Sheldrick, 1981), SIMPEL (Schenk & 
Kiers, 1984) and in MITHRIL (Gilmore, 1984) but 
there are significant differences between these pro- 
cedures and SA Y T A N  in regard to particular charac- 
teristics of the quartet contribution and its theoretical 
basis. In previous schemes, quartets have been 
invoked on the basis of various probability distribu- 
tions for four-phase invariants and the resulting phase 
indications combined with triplet indications through 
a weighted average. In contrast, SETF is not a prob- 
abilistic formula but is derived algebraically from a 
system of Sayre equations. A set of phases satisfying 
the SETF minimizes the least-squares residual for the 
system of Sayre equations and three significant details 
result from the algebra. First, the optimum weighting 
for quartets relative to triplets is given algebraically 
as - 2  T~ Q in (9) and (15). Second, the quartets which 
are selected belong to the special class which can be 
constructed from triplets by pairing the latter 'back- 
to-back' through a common cross term. This offers 
two practical advantages: such quartets can readily 
be found from the SIGMA2 list, and their contri- 
bution to the tangent formula can be computed 
economically. Third, these quartets fall into two 
distinct subsets, those formed with the largest E's  as 
cross terms and those formed with the smallest E's  
as cross terms. This has the effect that the equations 
tend to develop phase sets which satisfy the smallest 
magnitudes as well as the largest, and it is reasonable 
to suppose that this is advantageous in terms of 
efficient information content, because it is often said 
that the reflexions carrying most structural informa- 
tion are the very strong and the very weak. 

The general structure of MULTAN87 

MULTAN87 can be used in five modes, the first being 
the default. These are (i) SWTF with phase permuta- 
tion; (ii) SWTF in the R A N T A N  mode; (iii) 
SA Y T A N  with phase permutation; (iv) SA Y T A N  in 
the R A N T A N  mode; (v) X-Y.  SWTF uses the con- 
ventional tangent formula but with the statistical 
weights suggested by Hull & Irwin (1978). The phase 
permutation approach is that which begins with a 
small base of phases, some fixing origin and enan- 
tiomorph and the others varied from trial to trial by 
permutation, and builds up a body of phase estimates 
by a 'bootstrapping' process. The R A N T A N  
approach (Yao, 1981) is that for which all phases are 
given initially random values and some weight, and 
all terms may be included in the tangent formula from 
the very beginning of the process. The X -  Y method 
is that described by Debaerdemaeker & Woolfson 
(1983). 

MULTAN87 follows the pattern of previous ver- 
sions by allowing intervention by the user and the 
program documentation gives advice about this. 
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Tests of MULTAN87 

There exists a set of standard structures, offering a 
variety of space groups and known for presenting 
problems to direct methods, which are used to test 
new direct-methods procedures. A partial list of the 
tests, with structures referred to by brief code names, 
and the results obtained is now given. 

The number of phase sets generated by 
MULTAN87  by default is dependent upon the com- 
plexity of the given structure; in the following 
examples, unless otherwise indicated, 40 trials were 
made in modes (i) and (iii) and 50 trials in modes 
(ii), (iv) and (v). It should be mentioned that when 
MULTAN87  finds a set of phases with very favour- 
able figures of merit it ceases to generate phase sets 
and completes the process of presenting the structure. 

CORTISONE [ Declercq, Germain & Van Meerssche 
(1972): C21H2805, P212121, Z = 4 ]  

Solved easily in all five modes. 

MUCCAR [Bianchi, Pilati & Simonetta (1978): 
CI3HllN, P1, Z =2]  

Modes (i), (ii) and (v) each revealed less than half 
the structure after the default numbers of trials indi- 
cated above. The results obtained with S A Y T A N  
provide an example of the effect, mentioned above, 
of adjusting NZRO (the number of weak reflexions) 
to satisfy (12). With the default setting for NZRO 
[equation (13): N D E T / 2 =  156], mode (iii) gave a 
perfect result (in the sense that all 28 atoms were 
revealed in a 'map')  on the tenth trial; but after NZRO 
was reset to the value 240, which had been suggested 
by the program as an optimum value, the first trial 
produced a perfect result. In mode (iv), however, the 
effect of adjusting NZRO was not apparent, because 
N Z R O =  156 gave a perfect result for set 3 while 
NZRO = 240 gave a perfect result for set 2. 

NORG [ Roques, Rossi, Declercq & Germain (1980): 
C16H20C1NO3, P1, Z = 2] 

The usual numbers of trials in modes (i), (ii) and 
(v) revealed no useful fragment of the structure 
whereas 50 trials with S A Y T A N  in mode (iv) pro- 
duced four solutions showing 40 of the 42 indepen- 
dent atoms. In mode (iii), S A Y T A N  was not so 
successful; after 40 trials, the best set in terms 
of the conventional figures of merit was set 24 
(ABSFORM-- 0.933, PSIZERO = 1.197, RESID--  
12.59) but the E map showed no convincing part of 
the structure. 

TURSCH 11 [ Brackman, Daloze, Dupont, Tursch, 
Declercq, Germain & Van Meerssche (1981): 
C15H2404, P21, Z = 4] 

Nothing useful was obtained from 25 trials in mode 
(i) and 50 trials in each of modes (ii) and (v). With 

S A Y T A N  in mode (iv), the 18th trial revealed all of 
the 38 independent atoms. As with NORG, SA Y T A N  
in mode (iii) was not very effective: nothing useful 
was obtained from 25 trials. 

M U N I C H  4 [ Szeimies-Seebach, Harnisch, Szeimies, 
Van Meerssche, Germain & Declercq (1978): 
C27H220, Cc, Z = 4] 

The usual default runs in modes (i), (ii) and (v) 
gave less than half the structure in each case but 
S A Y T A N  produced a perfect solution for set 4 in 
mode (iii) and another perfect solution for set 2 in 
mode (iv). 

CINOBUFAGIN [ Declercq, Germain & King (1977): 
C26H2706, P212121, Z = 4] 

This structure is notoriously difficult. Nothing use- 
ful was obtained from the usual trials in modes (i), 
(ii) and (v). The phase-permutation modes (i) and 
(iii) generate only 12 trials by default for this structure 
and for S A Y T A N  in mode (iii) there was nothing 
useful in these 12 sets; but in mode (iv), S A Y T A N  
produced a perfect solution for set 4. 

A Z E T  [ Colens, Declercq, Germain, Putzeys & Van 
Meerssche (1974): C2~H16C1NO, Pca21, Z = 8] 

The most complete result was obtained in mode 
(iii) when the best set from 50 trials revealed one of 
the two independent molecules. 

Concluding remarks 

There is a great deal of serendipity in the development 
and application of direct methods. The X -  Y method 
(Debaerdemaeker & Woolfson, 1983) has no rational 
basis, was discovered by making an error and yet 
seems to be more effective than the standard tangent 
formula for which there is a strong theoretical basis. 
In addition, while a comparison of the effectiveness 
of different direct-method approaches is possible on 
a statistical basis, it cannot be forecast with certainty 
which approaches will succeed and which will fail 
for a particular structure. 

There is little doubt on the basis of our present 
experience that the SETF, as embodied in SA YTAN, 
is the most generally effective tool available in direct 
methods at present. However, in view of the 
foregoing, it is desirable to have as many procedures 
available as possible when it comes down to the 
practicalities of solving crystal structures. For this 
reason we intend to re-incorporate in some future 
version of M U L T A N  other procedures, notably 
YZARC (Baggio, Woolfson, Declercq & Germain, 
1978) and M A G E X  (Zhang & Woolfson, 1982), 
which were in some previous M U L T A N  releases. 

We are grateful to the Science and Engineering 
Research Council, the European Economic Corn- 
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Abstract 

The latter stages in the refinement of the protein 
erabutoxin b are described. The crystal structure of 
the 62-residue protein has been refined to a con- 
ventional R factor of 0.144 by stereochemically 
restrained least-squares methods using diffraction 
data to a limit of 1.4/~ spacings. Emphasis was placed 
on determining as accurately as possible the solvent 
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structure and the structures of heterogeneous groups 
in the protein. The final model includes two confor- 
mers for each of seven side chains and for an octapep- 
tide segment. A total of 111 sites for water molecules 
have been located as well as one sulfate ion with a 
total of 68 site occupancies. 65 of the solvent sites 
overlap either with protein atoms belonging to groups 
in two alternative conformations or with other solvent 
sites. Dual protein conformers and overlapping sol- 
vent sites were both included in the least-squares 
refinement. Individual thermal and occupancy pa- 
rameters were refined for solvent molecules. An 
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